翻訳と辞書
Words near each other
・ Importin
・ Importin α
・ Imports to Ur
・ Imposex
・ Imposible (2004 film)
・ Imposible (wrestler)
・ Imposing
・ Imposition
・ Impositions
・ Imposs
・ Impossamole
・ Impossiball
・ Impossibilism
・ Impossibility
・ Impossibility defense
Impossibility of a gambling system
・ Impossible
・ Impossible (Anberlin song)
・ Impossible (Captain Hollywood Project song)
・ Impossible (Christina Aguilera song)
・ Impossible (Daniel Merriweather song)
・ Impossible (Desperate Housewives)
・ Impossible (Edyta song)
・ Impossible (Måns Zelmerlöw song)
・ Impossible (novel)
・ Impossible (Shontelle song)
・ Impossible bottle
・ Impossible color
・ Impossible Creatures
・ Impossible cube


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Impossibility of a gambling system : ウィキペディア英語版
Impossibility of a gambling system

The principle of the impossibility of a gambling system is a concept in probability. It states that in a random sequence, the selection of sub-sequences does not change the probability of specific elements. Although the concept had been vaguely discussed in various forms for some time, it is generally attributed to Richard von Mises, who used the term ''collective'' rather than sequence.〔''Probability, Statistics and Truth'' by Richard von Mises 1928/1981 Dover, ISBN 0-486-24214-5 page 25〕〔''Counting for something: statistical principles and personalities'' by William Stanley Peters 1986 ISBN 0-387-96364-2 page 3〕
Intuitively speaking, the principle states that it is not possible to select a sub-sequence of a random sequence in a way to improve the odds for a specific event. For instance, if a coin toss sequence is random with equal and independent 50/50 chances for heads and tails, then betting on heads every 3rd, 7th, or 21st toss, etc. does not change the odds of winning in the long run. Richard von Mises likened the principle of the impossibility of a gambling system to the principle of the conservation of energy, a law that can not be proven, but has held true in repeated experiments.〔''The philosophy of Karl Popper'' by Herbert Keuth ISBN 0-521-54830-6 page 171〕
Elsewhere von Mises had also discussed impossibility of other issues in science and human understanding, e.g. in his book on Positivism he discussed the impossibility of exact descriptions due to linguistic constraints.〔''Positivism'' by Richard von Mises 1966 ASIN B000J47MJO page 120〕 And von Mises was also supportive of the notion of the impossibility of strict determinism in physics.〔''The historical development of quantum theory'' by Jagdish Mehra, Helmut Rechenberg 2001 ISBN 0-387-95182-2 page 685〕
As a framework for the impossibility of a gambling system, Richard von Mises defined an infinite sequence of zeros and ones as a random sequence if it is not biased by having the ''frequency stability property'' i.e. the frequency of zeros goes to 1/2 and every sub-sequence we can select from it by a "proper" method of selection is also not biased.〔Laurant Bienvenu "Kolmogorov Loveland Stochastocity" in STACS 2007: 24th Annual Symposium on Theoretical Aspects of Computer Science by Wolfgang Thomas ISBN 3-540-70917-7 page 260〕
The sub-sequence selection criterion imposed by von Mises is important, because although 0101010101... is not biased, by selecting the odd positions, we get 000000... which is not random. Von Mises never totally formalized his definition of a proper selection rule for sub-sequences, but in 1940 Alonzo Church defined it as any recursive function which having read the first N elements of the sequence decides if it wants to select element number N+1. Church was a pioneer in the field of computable functions, and the definition he made relied on the Church Turing Thesis for computability.〔Alonzo Church, "On the Concept of Random Sequence," Bull. Amer. Math. Soc., 46 (1940), 254–260〕〔''Companion encyclopedia of the history and philosophy'' Volume 2, by Ivor Grattan-Guinness 0801873975 page 1412〕〔J. Alberto Coffa, ''Randomness and Knowledge'' in "PSA 1972: proceedings of the 1972 Biennial Meeting Philosophy of Science Association, Volume 20, Springer 1974 ISBN 90-277-0408-2 page 106〕
In the mid 1960s, A. N. Kolmogorov and D. W. Loveland independently proposed a more permissive selection rule.〔A. N. Kolmogorov, ''Three approaches to the quantitative definition of information'' Problems of Information and Transmission, 1(1):1--7, 1965.〕〔D.W. Loveland, ''A new interpretation of von Mises' concept of random sequence'' Z. Math. Logik Grundlagen Math 12 (1966) 279-294〕 In their view Church's recursive function definition was too restrictive in that it read the elements in order. Instead they proposed a rule based on a partially computable process which having read ''any'' N elements of the sequence, decides if it wants to select another element which has not been read yet.
The principle influenced modern concepts in randomness, e.g. the work by A. N. Kolmogorov in considering a finite sequence random (with respect to a class of computing systems) if any program that can generate the sequence is at least as long as the sequence itself.〔''An introduction to probability and inductive logic'' 2001 by Ian Hacking ISBN 0-521-77501-9 page 145〕〔''Creating modern probability'' by Jan Von Plato 1998 ISBN 0-521-59735-8 pages 23-24〕
==See also==

* History of randomness

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Impossibility of a gambling system」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.